JOURNAE OF COMPUTATIONAL PHYSICS 111, 282-290 (1994)

Decoupling Approximations Applied to an Infinite
Array of Fluid Loaded Baffled Membranes*

C. L. SCANDRETT

DPepartment af Matlenatics, Naval Postgraduate School, Monterey, California 91940

AND

G. A. KRIEGSMANN

Department of Mathematies and the Conter for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey

Received June 19, 1992; revised October 7, 1993

Application of a time-dependent nonlocal radiation boundary condi-
tion, used in conjunction with the finite dierence technique, is applied
to the acoustic problem of scattering from an infinite array of baffled,
fluid-loaded membranes. The new boundary operator is compared with
the second-order Engquist and Majda boundary operator and with
several fluid/structure decoupling approximation technigues in the
determination of scattering amplitudes. € 1994 Academic Press, Inc.

INTRODUCTION

The scattering of a plane accustic wave by a periodic
array ol balfled membranes is studied in this paper. This
scatltering problem is not only mathematically and physi-
cally interesting in its own right, but it is also a critical com-
ponent for an analysis of a large finite array [1, 2]. In the
paper by Crighton ¢t al. [ 3], the example of scattering from
an array of fluid-loaded membranes is reviewed as a simple
model which displays many of the features found in scatter-
ing from more complicated arrays, such as scattering and
radiation from transducer arrays 4] and periodically
stilfened plates used in hull construction [5]. This paper
addresses the numerical problem of selving such scattering
problems and explores the uscfulness of recent approximale
technigues.

Floguet theory is first applicd to reduce the physical
domain above the array into a fundamental celt which is a
waveguide-like region above a single membrane. The solu-
tion in this cell is composed of propagating and evanescent
modes which carry the scattered encrgy away from the
membrane. Next, a new radiation boundary operator is
derived which essentially annihilates all the propagating
modes when applied at an artificial boundary »= R, which
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is several wavelengths above the array. Using this operator
and finite dillerences provides an accurate numerical
approximation to the scattered field in the truncated
fundamental cell.

In addition to developing an accurate [inite difference
scheme to study the scattering problem, three approximate
methods are proposed and implemented. The first two are
derived from a pseudo-differential equation formulation
of the problem wherein the back pressure from a single
membrane is expressed as the square root of a differential
operator. Approximations relating the membrane displace-
ment to the pressure are obtained by approximating the
square root by its truncated Taylor series or a rational funic-
tion. Using the first term in the Taylor series gives the plane
wave approximation [6] while using the first two terms
gives an approximation derived elsewhere by Kriegsmann
and Scandrett, and Miksis and Ting (KSMT) [7-9] for a
single baffled membrane. Both these approximations yield
simple analytical results for the field within the fundamental
cell. Finally, the third approximation comes about by
truncating the Green's function to incorporate only
the propagating modes of the cell. Then the integro-
dilferential equation for the membrane motion is solved
using finite differences. This s called the propagating
mode approximation (PM} or NLRB (nonlocal radiation
boundary condition) approximation.

Resuits using these three aprproximations are compared
against those of the full finite difference scheme (FFD).
Except for frequencies near resonance, the plane wave and
KSMT approximations agree very well with the FFD
results—the KSMT approximation being slightly superior.
Near resonant {requencies the plane wave approximation
becomes inaccurate while the KSMT approximation is still
quite good. In both cases the PM approximation gives
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excellent results although it requires considerably more
numerical effort.

An outline of the paper follows. In Section 1, the formula-
tion of the problem is given; followed by Section 2, which
gives a description of the finite difference scheme and the
radiation operator. In this section, comparison of the new
operator to the second-order radiation operator of Engquist
and Majda [10] is done. Section 3 outlines the derivation of
the approximate techniques used, and the paper concludes
with several examples.

1. FORMULATION

A periodic array of identical membranes, each of
length A, is held in place by an acoustically rigid infinite
baffle. The uniform spacing between membranes is B, resulting
in a periodic geometry of period 2a, where 2a= A+ B,
Above thé array is a homogeneous and isotropic acoustic
fluid and below it a vacuum. The baffled structure is
insonified by a plane time harmonic pressure wave of radial
frequency e (see Fig. 1a).

In dimensionless variables x={x, y), the equation
governing the pressure in the fluid is

VIP+ikiP=0, (1)

where k = wA/c, and ¢, is the sound speed in the fluid. The
spatial variables were made dimensionless by scaling with
respect to A.

The equation for the lateral displacement of the jth
membrane after scaling is

2

W.
dx; + kW = ec*k*P((x, 0; k),

X, ljl=12. 0, ()

where the dimensionless parameters ¢ and ¢ are ratios of
fluid to membrane wave speeds {c,/c,) and densities
(paA/p.), tespectively. The £, denote the set of points
occupied by the jth membrane. The ratio of pressure to
membrane displacement scale factors is Aw’p,.

The presence of the acoustically hard baffle introduces the
boundary condition

JP
— (x,0)=0,

Q
5 x¢2,

(3a)

where Q is that portion of the plane occupied by the baffles,
while fixing the membranes’ endpoints on the baffle requires

W,=0, xed, ljl=1,2,..0, (3b)
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where 042, denotes the end points of the jth membrane.
Equating the time harmonic normal velocities of the fluid
and membrane at their points of contact yields

apP

S ow,
dy !

xeQ, y=0 (4)

The plane incident time harmonic pressure P’ is a
solution of (1) and is given by

P’(X, ¥ k] — é e—ik{xcos@,u+ ysin@;]’ (5)
where @, is the angle that the incident wave makes with the
positive x axis and the time dependence is assurmed to be
e~ ™" 1f the line y =0 were entirely rigid, then the incident
wave would be reflected as P'(x, — y. k). Accordingly, the
total pressure is decomposed as

P(xsy;k):P[(xvy;k)-l-P[(xa “.V,k)

+plxypik),  0<yp, (6)
where the effect of the periodic array is manifest in p, the
scattered field.

Inserting (6) into (1)~{4) it is found that p satisfies

Vip+kp=0, O<y, (7a)
ap 0, xeQ
_p={ X€E (7b)
oy W, xel;
d* W, 22 2240 p! k 0;
dx2 +c WJ-:E:C { P(X, 0, )+p(xs sk]}a
xeQ, (Tc)
W,=0, xedQ (7d)

The formulation of the scattering problem is completed by
requiring p to behave as an outgoing wave at oc.
The formal solution of (7a) is given by

fee]

plx, yik)y=Y a,e™*tinr . p>Q (8a)
f.=Vk—7; {8b)
v, = —kcos @,+ nnj/a, {8¢)

where the reflection coefficients a, are to be determined.
This solution is formally valid for all (x, y) above the baffled
membranes. The numbers f,, in (8b) are the propagation
constants of the reflected waves scattered by the surface. For
given k, @,, and a, there are only a finite number of these
that are purely real. That is, there are numbers N{k, @,, a)
and Mk, @,, a) such that f§ is real for —M < j< N and is
purely imaginary for j> N and j < — M. The latter modes
represent surface waves which decay exponentially for y > 0,
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while the former correspond to radiating waves. Finally,
using conservation of flux (or power) arguments it is readily
found that the coefficients «,, for the propagating waves,
satisfy the relationship

112
3]
—1/2

ﬁWO(x) dx=2a Z ﬁn Nan ”25 (9)
-M

where the overbar denotes complex conjugation and the 3,
the imaginary part of a complex number.

2. FINITE DIFFERENCE SCHEME

The finite difference scheme which is used to solve the
coupled fluid structure problem is very similar to that
presented in Kriegsmann and Scandrett [ 7]. It is an explicit
time marching scheme which is second-order accurate in
both time and space. The solution of the time harmonic
problem is obtained from the explicit time domain calcula-
tions as a result of the limiting amplitude principle {117,
which guarantees the approach to a steady state.

The spatial domain used is: |x|<a and 0 y<R,.
Unlike the single baffled membrane problem, wherein a
radiation boundary condition needed to be applied in the
fluid surrounding the membrane, the periodic array requires
a radiation boundary condition only at y=R,. (Along
x= +a, periodic boundary conditions are required.) In
order for the radiation boundary condition to successfully
model the infinite fluid, it must prevent reflection of
the radiating modes generated by the fluid/membrane
interaction.

Because the number of existing radiating modes and their
directions of propagation are dependent upon the incident
angle (&,), frequency (k) of the insonifying plane wave, and
a separation parameter (a), the radiation boundary condi-
tion applied at R, must be flexible. Incorporated into the
finite difference code is a time dependent nonlocal radiation
boundary condition which effectively inhibits reflections
from the boundary of all radiating modes. The radiation
condition is similar to that used in the work of Fix and
Marin [12], except that it is applied in the time domain
rather than the frequency domain.

Development of the radiation condition follows from the
time harmonic form of Eq.(8a). For large values of y,
evanescent modes are neglected and the scattered pressure is

N

pxytkyx Y

n=-—M

a ei}:,,.\’+ iy y—ir
n .

(10)

A radiation boundary condition which annihilates the #th
propagating mode is

0

B"(¢)_51)+ﬁ"_§? (11)
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Applying boundary operators to each of the several modes
yields

Y Ban et ) %0,

ne=—M

{12}

where the time dependence of the modes has been
incorporated into the coefficients a,. The time dependent
coefficients a,(¢) can be found from the time-dependent
form of Eq. (8a) as

1 pa ; )
afn=o- [ e nOpie y nde - (13)

Inserting (13) into (12), applying (11), taking the partial
with respect to y outside of the summation, and writing
explicitly the a,(t) coefficient in the summation yields the
boundary operator:

‘N

ap 1 © -0 0P 3
N =6 22 iz 4y g
o Zanz_Mﬁ,,J_ﬂe L&y 0

(14}
The above boundary operator is then center differenced and
combined with the center-differenced form of the wave
equation resulting in a matrix equation for the unknown
values of the pressure at the artificial boundary, y = R,.

While application of the boundary operator does require
a matrix factorization requiring O(n®) operations, the
factorization need be done only once before the advent of
time domain difference calculations. Subsequent solutions
of the unknown pressures at the artificial boundary are
found using the factored form of the matrix which requires
only Q(n*) operations and, therefore, is relatively quick.

A stopping criterion is applied to halt the calculations
when solutions to the problem at two different times differ
by less than a prescribed tolerance level. In all of the results
given, the iterations were stopped when the integrated
membrane displacement and the integrated pressure at the
artificial boundary differed in successive time levels by less
than 0.000035.

A comparison was made with the current radiation
boundary condition and the second-order Engquist and
Majda boundary operator [ 10, Eq. (9}]. The Engquist and
Majda operator was finite-differenced in time and space,
combined with the discretized form of the wave equation
and periodic boundary conditions leading to a circulent
Jacobi matrix, which is in turn solved repeatedly (as is
NLRB) for the values of the unknown pressures at the
artificial boundary of the numerical domain, Physically, this
operator was designed to handle scattering problems for
which the scattered wave should strike the artificial
boundary at near normal incidence (2 condition not always
met in waveguides). A more appropriate boundary operator
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for waveguides is derived in Kriegsmann [13], but it
becomes cumbersome if more than two modes of the
waveguide are propagating. For this reason, the Engquist
and Majda operator was chosen for the comparison. The
two methods were tested on a waveguide problem for which
analytical solutions were known. In particular, the
waveguide was forced at one end (x=0} by known

scoastic Tlid

a
. (r.8)
/ Ay _"d
,
x=—AST-B x=cAS2 7 aAS2 w=AS24+B
membrane LT membrane L1  membrese
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FIG. 1. ({(a) Problem configuration. (b} Comparison of the nonlocal

(NLRB) and Engquist and Majda (EM) radiation boundary operators.
Boundary conditions for the waveguide are homogeneous Dirichlet {y = r}
and homogeneous Neumann (v = 0), resulting in two propagating modes.
Amplitudes of the two propagating and one of the evanescent modes are
plotted as a function of the position along the waveguide (x). The exact
answer should be one for each propagating mode and exponentially
decreasing for the evanescent mode.
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propagating and evanescent modes. The side boundary
conditions for this example were homogeneous Dirichlet at
y=n and homogencous Neumann at y=0. Exciting the
first three modes:

2n—1
= , =12..,
s, 3 I

e I
u, = cos(s, y) e~ amm i

with amplitudes of one and running the finite difference
codes which were identical, except in their radiation
boundary condition for 4000 iterations produced the mode
amplitudes as functions of x shown in Fig. Ib, As can be
seen, the Engquist and Majda operator does significantly
better with the evanescent modes than does the nonlocal
radiation condition. However, in determining the
amplitudes of the propagation modes, the Engquist and
Majda operator produces an unwanted standing wave
pattern. This type of pattern is less noticeable with the first
mode compared to the second, due to the fact that the first
mode’s direction of propagation is more nearly normal to
the artificial boundary, and therefore the Engquist and
Majda boundary operator introduces only a negligible
reflection. For this simple problem, it is possible to analyti-
cally calcuiate the amplitude of the standing wave pattern.
Doing so for the second propagating mode at x = 3n/8 the
theoretical value is found to be 1.085 while the numerical
solution yields 1.094. The incident angle of the second
propagating mode measured from the boundary normal is
tan ~!(s,/f,) = 48.6°. For probiems in which incident angles
are in excess of this value, amplitudes of the standing wave
patterns get considerably larger. 1t is also true that the
amplitude of the standing wave is a function of where the
artificial boundary has been placed and upon which mode
and what value of & has been used.

For the fluid membrane coupled problem, it is difficult to
know where to “best” determine the amplitudes of the
propagating modes if one uses the Engquist and Majda
radiation condition, One must also be concerned with
spurtous evanescent waves in applying the nonlocal
boundary operator. For these reasons, both boundary
conditions are used and compared. The resuits presented in
the sequel demonstrate that the nonlocal boundary
operator gives membrane displacement shapes very similar
to those using the Engquist and Majda boundary operator.
Furthermore, in cases where there is a significant amount of
radiated energy, the nonlocal boundary operator more
nearly satisfies the energy conservation condition (Eq. (9)).

It should be noted that the Engquist and Majda radiation
condition produces a matrix-type operator just as the non-
local boundary operator method does. In problems where
Neumann, Dirichlet, or mixed B.C. are imposed on the sides
of the waveguide, the Engquist and Majda operator is
tridiagonal in a form which is, of course, easier to handle than
the full compiex matrix produced by the nonlocal radiation
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condition. However, for periodic boundary conditions, the
matrix for the Engquist and Majda condition remains
sparse, but it is no longer tridiagonal.

3. APPROXIMATE TECHNIQUES

In this section three approximations relating p(x, 0) to
(6p/dy)x,0) are given. Two of these are derived from
the Kriegsmann and Scandrett [9] method, while the
third is a result of applying the time harmonic version of the
radiation boundary operator (Eq. (14)) on the surface of
the membrane.

When the Kriegsmann and Scandrett approximation for
a single membrane is inserted into {7c) an equation for
W;{x) alone is obtained. From (8a)

(15a)

oo

- ax

-5 e
—oc

pix,0)=

—i Z ” 'Pn‘

15b
273.¢ (13b)

where 4, =if,a,. By expanding 1/f, in a power series in
terms of y,/k, inserting this expansion into {15b), inter-
changing the orders of summation, formally replacing terms
of the form y2"e™~ by (—1)" (d*"/dx*™) e~ resumming
the infinite series, and using (10a) Eq. {15b) becomes

i 1
p(x90)= )

kK Jt+ DYk oy

where D = d/dx. Inserting (16) into {7¢) and using (7b) gives
the pseudo-differential equation

(16}

P
W,
- 2“’+c2k2W =

=ec’k {2P(x0k) k\/l—l-Tz/kz }

erj. (17

Pseudo-differential equations involving square roots of
differential operators occur in other branches of wave
propagation and, in particular, underwater acoustics [ 14].
There, theories such as the parabolic approximation and the
wide angle parabolic approximation arise by replacing the
square root by a polynomial or a rational function in
the differential operator. In an analogous fashion an
approximate differential equation for the displacement of
the jth membrane is deduced from (17) by approximating
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1/./1 + D*/k* by a polynomial in D?*/k* For example, if
only the first term of its Taylor series is used, then

2

a*w,
ey —2+ %2 [1 +k:| W,=2eck*Pl(x, 0,k), xeQ,

(18)

This is just the “plane wave approximation,” because the

same approximation gives

__idp __1
Plx.0)= =2 2. 0) = — p W)

A more useful and accurate approximation results when the
first two terms of the Taylor series are used. Then, the
approximate equation becomes

fee”| d*W, iz
1_ 23.2 - .
[ 2k:|d2+ck|:l+k]WJ

=2ec?k2PI(x, 0; k), xef,

(19)

(20)

and the corresponding result for p(x, 0) is

TE (21

' 2
0= = 1= | W
These are the same expressions derived in Kriegsmann and
Scandrett [7]} for a single membrane and Miksis and
Ting [8] for a single membrane under a different iimiting
process.

The third approximation for the surface pressure in terms
of the membrane displacement is found in the following
manner. Set Eq. (15a) equal to W, and the coefficient a,
(=A,/iB,) can be found in terms of the jth membrane’s
displacement:

1
= Ziaf

*"’"ij(f)dé- (22)

H -

Upon substitution of Eq. (22) into Eq. (15b) and neglecting
evanescent modes, one obtains the third approximation
used in this paper,

i

p(x, 0)= — j W, (&) e =g, (23)

2a"7 Mﬁ"! —1/2

This final approximation yields an integro-differential
equation for the jth membrane displacement and is therefore
nearly as hard to solve as the fully coupled problem, except
that the number of modes has been reduced from infinite
to only those which involve radiation of energy from the
surface.
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FIG. 2. Comparison of solutions displaying membrane displacement
at a nonresonant (in vacuo} frequeency for two different incident angles.

4. NUMERICAL RESULTS

A scries of graphs will be presented to show the
applicability of the three impedance approximations, as well
as some confirmation of the finite difference scheme used. In
each of the examples, the following values are fixed: ¢ =0.5,
£=02, A= 1.0, 4x = 55 (except {or the final figure for which

itis %), and 41 =09k 4x/,/1 + 1/c* The three parameters
k, B, and @, are varied to determine their effect on the
solution of the scattering problem.

In Fig. 2a plane wave of frequency other than an in vacuo
eigenfrequency strikes the array at two different angles. In
each case, it would appear that all of the approximate
methods give results equivalent to the finite difference solu-
tions. For the case &, = 117/18 four radiating plane waves
are excited (i.e., §, is real for —2<n<1), while for @,=
57/6 the four radiating plane waves are associated with §,,,
where —3 <n<0. In each case the modal coefficients a,,,
found using the values of the membrane displacement
(whose magnitudes are plotted in Fig. 2), are given in
Table I and can be seen to be in excellent agreement. For
this example, the conservation equation (9) is nearly

287

satisfiecd by both of the finite difference solutions. The
relative error in trying to satisfy Eq. {9} is given by

_ 3 pW(x) dx—2a T, B, aul)?

R = -
3V PWolx) dx

(24)

For the cases @,=357n/6 and @,= 11x/18, the values of R
were NLRB: —0.0715 (0.0039), EM (Engquist and Majda
boundary condition): —0.0076 (0.0041); and NLRB:
—0.0253 (0.0253), EM: 0.0607 (0.0265), respectively. The
values in parenthesis are the numerical values of the
imaginary part of the integrals. In subsequent discussion,
the values of R and of the imaginary parts of the
corresponding integrals are given in Table III.

In Figs. 3 and 4, the frequency associated with k=2n
corresponds to the first in vacuo eigenfrequency of the mem-
branes. In Fig. 3 two plots are shown in which the value of
@, is different while Fig. 4 shows the effect of varying the
spacing between membranes. In both figures the third
approximation matches very well with the finite difference
calculation, whereas the PWA and KSMT approximations
are off. The relative errors made at the point of maximum
deflection of the membrane are approximately 7%, 5%,

£=.2,0=0.5,k=2r.A=1,B=1/5

0
©
]
®[=:')Tr/6
o
3
c. T
-0.5 0.0 0.5
X
o
=
9=1tn/18
S
=
<
S . W
-0.5 c.a 0.5

LEGEND
f.d. with nlrb be
f.d. with em be
plane wave approx.
kmst approx.
nlrb approx.

=}
o]
a
+
x

FIG. 3. Same as Fig. 2 except that the membranes are being excited at
their first in vacuo tesonant frequency, again for two different incident
angles.
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TABLE1
a, FD PWA KMST NLRB a, FD PWA KMST NLRB
Figure 2
@,=5n/6 @,=11x/18
a_, 002812 002795 0.02794 0.02792 a_s 001614 0.015%0 001590 0.01597
a_, 0.03704 003670 (03668 0.03662 a_; 0.01506 001485 001434 0.01488
ay 002860 0.02827 0.02826 G.02818 a_, 000738 0.00727 0.00727 0.00727
a, 0.00928 .00906 0.00908 0.00901 aq 0.00843 0.00828 0.00829 0.00837
Figure 4
B=23 B=1
@ _y 0.19058 0.24477 021755 0.19280 a_; 0.14007 0.16089 0.14299 0.14160
a_. (.16436 021172 0.18818 0.16666 e 0.15914 0.18336 0.16299 0.16131
a_, 0.16686 0.21526 0.19135 0.16941 a_, 0.15140 0.17493 0.15551 0.15381
ay 0.15726 020317 0.18068 0.15989 ay 0.14597 0.16931 015057 0.14876
Figure 5
©,=2nf3 6,=201x/3
a_, Cutoff Cutoff Cutoff Cutoff a_, 0.59231 0.80478 0.71529 0.60270
a_, 0.12081 0.28866 025657 0.29394 a5 021231 0.28689 0.25500 0.21480
a_, 0.13465 031802 (0.28268 032375 a., 023438 631512 028010 023598
a, G.12317 0.28871 0.25665 0.29383 g G.21363 (.28523 0.25356 021369

il

£=.2,¢=0.5,k=4m,A=1,0[=57/6

*x +t o0

winnn

LEGEND
f.d. with nlrb be
f.d. with em be
lane wave approx.
kmst approx.
nlrb approx.

(Wi

£=.2,c=0.5,k=2m,A=1,B=1

1w

FIG. 4. Same as Fig. 3, except that results are displayed at the first

in vacuo resonant frequency of the membranes for two different inter-

membrane spacings.

frequency. Cutoff occurs at &,=2n/3.

X+ > 00

LEGEND
f.d. with nlrb
f.d. with em bc
planc wave approx.
kmst approx.
= nlrb approx.

81=2.017/3

0.5
be

FIG, 5. Comparison of solutions at and near the waveguide cutoff
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and < 1% for the PWA, KSMT, and NLRB approxima-
tions, respectively, with &,=11n/18. The relative errors
increase for ® = 5r/6, where again the PWA approximation
is worst, while the NLRB approximation is best with a
relative error < 1%. In comparing the finite difference codes
employing the values of R given from the table, one might
assume that the nonlocal boundary operator is doing much
better than the Engquist and Majda operator. The worst
case for the latter operator being Fig. 3 with @,=11x/18
with an R value of 0.44 compared to (.0041 for the nonlocal
operator. A possible explanation for the large value of R in
the Engquist and Majda solution is that the pressure and
membrane displacement are incorrectly phased at the fluid
membrane interface, causing some error in calculating the
pressure-displacement integral,

Because the PWA and KSMT approximations derived in
Sections 3 are the same as those presented in Kriegsmann
and Scandrett [9] for a single baffled membrane, one might
expect that these approximations are unable to account for
interactions between membranes. Figure 4 shows the results
of varying the value of # and, in fact, the KSMT and PWA
solutions are found to be identical. One would conclude

£=.2,c=0.5,k=14m,A=1,0;=57/6

3.07

B=1
:—E
=
=
[=] ¢ »
-05 0.0 0.5
X
g
]
RB=1/5
E
(=]
<
o4 q ha
os 0.0 0.5
x LEGEND
g ={d. with nlrb be
o={d. with em be
a = plane wave approx.
+ = kimst approx.
X =

nlrb approx.

FIG. 6. Comparison of solutions showing membrane displacement at
the second in vacuo resonant freguency of the membranes for two different
inter-membrane spacings.
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£=.2,0=0.5,A=1,B=1,8]=5n/6

i

w1l

X LEGEND

f.d. with nlrb be
f.d. with em be
plane wave approx.
kmst approx.

nlrb approx.

® +« > 00

aarnnn

FIG. 7. Comparison of selutions showing membrane displacement at
the second and third in vacuo resonant frequencies of the membranes.

thai these approximations are therefore of limited value in
problems where interactions between membranes are
presumed to be strong.

Figure 5 is included to show what happens at “cutoff,”
which occurs when one of the f, equals zero. At this
frequency it is hard to assess which, if any, of the methods
is doing a good job. For this case the finite difference code
using the Engquist and Majda operator is presumably the
“best” since it has a lower R value than the nonlocal finite
difference solution. 1ts R value is still, however, relatively
high (0.2543). For the case just above cutofl, it can be seen
that none of the approximate methods do very well nor does
the finite difference code with the Engquist and Majda
operator. The reason for their failure lies in the fact
that a significant amount of ¢nergy is being radiated away
at an angle of =82° from the normal to the boundary
{see the amplitude of 4 _; in the tables). Just as the Engquist
and Majda require near normal incidence to eliminate
unwanted reflections, so too can the PWA and KSMT
approximations be thought of as valid for cases of near
normal scattering from the radiating membranes,

Figure 6 is similar to Fig. 4 in that the spacing between
membranes is allowed to vary, while holding €, and k fixed.
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TABLE I
a, FD PWA KMST NLRB a, FD PWA KMST NLRB
Figure 7
k=6érn k=4x

a_y 000732 0.00947 0.00843 0.00783 a_n, NR NR NR NR
a_p 0.00212 0.00223 0.00199 0.00191 a_y, NR NR NR NR
d.g 001160 0.01392 001238 001161 a_g NR NR NR NR
a_g 001535 0.01836 0.01651 0.01544 a_g NR NR NR NR
a_, 0.00884 001069 0.00951 000887 a_5 0.02188 002544 002262 0.02236
a_g 000185 0.00226 0.00201 0.00192 a_g 0.05165 0.06004 005337 0.05257
a_s (4.00539 4.00652 0.00580 (.00546 a_s 005716 (06642 G.05904 0.05808
doy 0002006 0.00252 0.00225 000214 a_y 0.02637 0.03062 002722 0.02672
a_; 001244 0.015035 001338 0.01280 a_; 0.02301 0.02673 0.02376 002336
a_, 0.01512 001819 0.01618 001580 a_, 005622 0.06522 005798 0.05682
a_, 000879 0.01022 0.00923 0.00964 a_, 0.05352 0.06190 005507 005375

ap 0.00556 0.00568 000560 0.00526 a, 0.02570 0.02922 0.02621 002522

The second in vacuo eigenfrequency of the membrane is at
k= 4n. It is shown in Fig. 6 that, in fact, the difference in
spacing between membranes has very little effect on the
acutal membrane displacement. It does, however, affect

TABLE II1

Case R(NLRB) |(NLRB) R(EM}  [(EM)
Figure 2

&= 3nf6 —00715 00039 ~0.0076 0.0041

&,=11x/18 —00253 (0253 0.0607 0.0265
Figure 3

&,=5n/6 —0.0011 0.8417 —0.0510 0.8830

8,=11x/18 (.0041 3.780 —0.4429 4973

Figure 4

B=2/3 0.0093 0.8207 —0.1646 0.9391

B=1 00121 0.9191 00549  0.8726
Figure 5

&,=12r/3 0.5559 1242 02543 0.2851

@,=2.01=/3 —0.0001 2.269 —0.2281 2573
Figure 6

=1 00105 0.3096 0.1313 0.2670

B=1/5 0.0163 0.3092 0.0122 0.3090
Figure 7

k=6n 0.0168 0.0325 0.0058 00322

k=4n 0.0050 0.3043 0.0883 0.2778

which and how many modes will radiate energy. For 8=1,
there are eight radiating plane waves —7 < n <0, while for
B =1 there are only five, —4<n<0.

The final figure compares the results of exciting the mem-
branes at their second and third in vacwoe cigenfrequencies
with separation and incident angle fixed. At higher frequen-
cies, it can be seen that the KSMT approximation does a
“better” job in mimicking the correct membrane displace-
ment and hence the coefficients of the radiated plane waves.
All approximations can be shown to approach the PWA for
large frequencies since in that limit the 8, — k, and Eqgs. (21)
and (23) collapse to Eq. (19). Resuits for the computed
coefficients can be found in Table IL.
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